🧱 Кварцевое стекло

Кварцевое стекло является отличным материалом для производства оптических компонент для решения задач в ультрафиолетовой (УФ), видимой и ближней инфракрасной (ИК) областях спектра.

Кварцевое стекло может быть получено разными методами - высокотемпературным плавлением кристаллов натурального кварца, плавлением высокочистого песка, а также в результате плавления не натурального, как в первых двух случаях, а предварительно синтезированного и, т.о., обогащенного кремний-содержащего сырья.

Компания «Тидекс» изготавливает оптику из следующих марок кварцевого стекла:

- УФ кварцевое стекло марки КУ-1, которое получают высокотемпературным гидролизом четыреххлористого кремния (SiCl4) в кислород-водородном пламени;
- УФ-ИК, кварцевое стекло марки Infrasil 302, получаемое плавлением природного кристаллического кварца в электрической печи, с последующией очисткой.

Эксплуатация этих кварцевых стекол возможна до температуры 950°С, при этом, благодаря их очень низкому коэффициенту теплового расширения они могут быть быстро нагреты и охлаждены практически без риска необратимого разрушения из-за термоудара. Эти свойства вместе с уникально высоким, по сравнению с большинством других стекол, пропусканием, способствует их широкому использованию для производства высококачественной оптики от простых окон, линз и призм до сложных элементов с многослойными диэлектрическими покрытиями: лучеделителей, элементов, смешивающих (пропускающих одновременно) излучение разных длин волн, холодных/горячих зеркал и т.д., и т.п. Являясь достаточно инертными материалами к большинству веществ, в том числе и к воздействию практически всех химических кислот, эти кварцевые стекла также находят применение в агрессивных окружающих средах.

Диэлектрические свойства вместе с очень высокой электрической восприимчивостью и низкой теплопроводностью в широком диапазоне температур, позволяют использовать их в качестве термо- и электро-изоляторов.

Редкая комбинация отличной температурной, химической и УФ стабильности вместе с высоким пропусканием в ГУФ, делают эти кварцевые стекла уникальными для создания проекционных шаблонов/масок для целей фотолитографии.

ООО «Тидекс» производит и поставляет широкий спектр оптических компонент из кварцевых стекол марок КУ-1 и Infrasil 302. Примеры можно найти в следующих специальных разделах:

- Оптические компоненты для Nd:YAG лазеров;
- Оптические компоненты для лазеров, излучающих в УФ, видимом и ближнем ИК-диапазонах;

Оптика для спектроскопии:

- Подложки для FTIR-светоделителей
- Плоскопараллельные и клиновидные окна.

УФ кварцевое стекло марки КУ-1 характеризуется высоким пропусканием в УФ, видимом и ближнем ИК-диапазонах спектра. КУ-1 не имеет характерных для минерального кварцевого стекла (плавленого кварца) полос поглощения в диапазоне 170-250нм, однако обладает интенсивным поглощением в диапазоне 2600-2800нм, вследствие наличия группы ОН в стекле. Материал отличается

отсутствием флюоресценции и характеризуется радиационно-оптической стабильностью. КУ-1 практически не содержит пузырей и включений

Ближайшими аналогами КУ-1 являются стекла следующих марок: Suprasil Standard (Heraeus), Spectrosil A and B (Saint-Gobain) and Corning 7940 (Corning), Dynasil 1100 and 4100 (Dynasil).

УФ-ИК кварцевое стекло марки Infrasil 302 характеризуется уникальными физическими свойствами и превосходными оптическими характеристиками от УФ до ИК-области спектра, что определяет его предпочтительность среди прочих материалов для изготовления оптики в широком диапазоне длин волн. Материал не имеет какого-либо существенного поглощения в области от 250нм и не имеет «водяного» (ОН) поглощения в районе 2700нм. Стекло марки Infrasil 302 практически не содержит пузырей и включений.

В ИК диапазоне спектра ближайшим аналогом Infrasil 302 являются стекла следующих марок: КС-4В и КИ (в настоящее время обе марки не выпускаются).

Таблица основных свойств

Описание параметра	Марка кварцевого стекла					
	КУ-1	Infrasil 302				
Максимальный доступный размер блока материала, мм	наплавленный блок диаметром 220 мм и толщиной 200 мм	наплавленный блок диаметром 570 мм и толщиной до 350 мм				
Диапазон пропускания материала, нм	160-4350	175-4350				
Диапазон пропускания материала со значением пропускания более 90%, нм	200-1250	300-2700				
Значения пропускания материала в зависимости от длины волны в УФ (для образца 10мм толщины)	170 нм - более 65% 180 нм - 85% 190 нм - 88%	170 нм - более 50% 260 нм - 77% 270 нм - 85%				
Содержание гидроксильных (ОН) групп, ppm	< 2000	< 8				
Флюоресценция (после УФ возбуждения)	отсутствует	сине-фиолетовая				
Примесный состав по основным металлам, ppm	< 5	< 25				
Двулучепреломление, нм/см	< 5	< 5				
Метод получения	высокотемпературный гидролиз четыреххлористого кремния (SiCl ₄) в кислород-водородном пламени	высокотемпературная вакуумная плавка природного кристаллического кварца с последующей очисткой				
Верхняя граница (температура) отжига, °C	1120	1180				
Температура размягчения, °С	1600	1730				
Радиационно-оптическая стабильность (к гамма-излучению)	стабилен	хорошая, нет заметной деградации пропускания при облучении ионизирующим излучением				
Оптическое качество материала						
содержание пузырей и включений в объеме материала 100см³, мм²	Определяется ГОСТом 15130-86	Стандарт Heraus				
совокупная площадь сечения всех пузырей в объеме материала 100см³, мм²	0 категория по DIN 58927, MIL - G -174 B	0 категория по DIN 58927, MIL - G -174 B				

Домостроительная ул. 16 194292 С.-Петербург, Россия

Факс: 7-812-3092958 **E-mail:** optics@tydex.ru

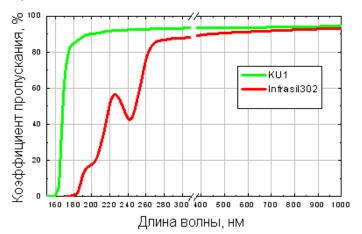
Тел.: 7-812-3318702

максимальный размер пузырей в одном кг материала, мм	< 0.03	< 0.1
оптическая однородность материала при диаметре блока: 220 мм 190 мм 70-90 мм	delta n < 5 × 10 ⁻⁶ delta n < 5 × 10 ⁻⁶ delta n < 5 × 10 ⁻⁶	delta n порядка 6 × 10 ⁻⁶

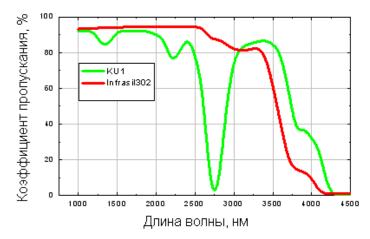
Одинаковые свойста

Плотность , Γ /см ³	2.21		
Показатель преломления	n _F (486нм)=1.4631 n _d (588нм)=1.4585 n _C (656нм)=1.4564		
Постоянная Аббе		67.8	
Температурный коэ расширения в диапазоне	0.55×10 ⁻⁶		
Твердость по Кнупу, кг/м	500		
Коэффициент Пуассона, (T = 25 °C)		0.17	
Модуль объемной деформации, ГПа (T = 25 °C)		36.9	
Предел прочности при растяжении, МПа		50	
Предел прочности при сжатии, ГПа		1.1	
Модуль Юнга, ГПа (T = 25 °C)		73	
Предел прочности, МПа (T = 25 °C)		50	
Модуль сдвига, ГПа (T = 25 °C)		31	
Температура деформации, ℃		1025	
Максимальная рабочая температура, °С	постоянная	950	
	кратковременная	1200	
Электрическая прочность, кВ/см (T = 25 °C)		250-400	
Коэффициент теплопроводности, Вт/(м×K) (T=25 °C)		1.38	
Удельная теплоемкость, Дж/(кг×К) (T = 25 °C)		728	
Химическая стабильность (вода, кислоты)		Высокая устойчивость (кроме HF)	

Значения показателя преломления в зависимости от длины волны


(для марки КУ-1 использовать значения до 2 микрометров)

Длина волны, мкм	Показатель преломления	Длина волны, мкм	Показатель преломления	Длина волны, мкм	Показатель преломления
0.2	1.551	0.7	1.455	1.7	1.442
0.22	1.528	0.75	1.454	1.8	1.441
0.25	1.507	0.8	1.453	1.9	1.440
0.3	1.488	0.85	1.452	2.0	1.438
0.32	1.483	0.9	1.452	2.2	1.435
0.36	1.475	1.0	1.450	2.4	1.431
0.4	1.470	1.1	1.450	2.6	1.428
0.45	1.466	1.2	1.448	2.8	1.424
0.5	1.462	1.3	1.447	3.0	1.419
0.55	1.460	1.5	1.445	3.2	1.414
0.60	1.458	1.6	1.443	3.37	1.410
0.65	1.457				


ООО «Тидекс» предлагает оптические компоненты из указанных марок кварцевого стекла, характеризующиеся точностью формы поверхности (проходящий волновой фронт TWD или плоскостность) до 0.1 lambda (lambda = 633нм) и чистотой поверхности 20/10scr/dig (стандарт MIL-0-13830A). Стандартные каталожные

окна Д12.7мм и Д25.4мм доступны со склада.

Типичные кривые пропускания кварцевых стекол КУ-1 и Infrasil 302, учитывающие Френелевские потери на отражение, представлены на рис. 1 и 2.

Puc. 1 KУ-1 и Infrasil 302, пропускание в диапазоне длин волн 150-1000 нм. Толщина образца 10 мм.

Puc. 2 KУ-1 и Infrasil 302, пропускание в диапазоне длин волн 1000-4500 нм. Толщина образца 10 мм.

Обращаем Ваше внимание на то, что данная статья приведена только для информации. Мы не поставляем кварцевые стекла марок КУ-1 и Infrasil 302 в заготовках, равно как и полуфабрикаты из них, а только готовые компоненты с покрытиями и без оных.

